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FOREWORD -

The Contract F33615-86-D-3800 Task 0017 "Soft-Ground Aircraft *
Arresting Systems" was initiated and monitored by the Structural !
Integrity Branch of the Air Force Wright Aeronautical Laboratories
(AFWAL/FIBE) and the Air Force Civil Engineering Center, Tyndall Air '
Force Base, Florida for the Federal Aviation Administration (FAA). The
objective of the contract is to determine the feasibility of using soft v
materials like clay, sand, gravel, water, and foam to arrest aircraft in Y
the event of an overrun past the end of the runway. -7

The principal investigator for Universal Energy Systems, Inc. (UES)
was Mr. Robert F. Cook. Dr. R. F. Taylor of the University of Dayton g
also participated in the material modeling portion of the program. The
AFWAL Project Engineer was Mr. Roger Aschenbrenner. This final report
covers all technical work completed on the contract from initiation on
2 September 1986 through 31 August 1987.
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SECTION 1 z
INTRODUCTION N
Aircraft sometimes overrun the available length of runway during N
landing or takeoff abort because of poor braking conditions or pilot )
misjudgment. Snow or ice covered runways can severely limit braking .
] capability. In any case, the aircraft being off the designated runway N
) poses a problem to the airport manager and the airline operator in terms :
i of changing landing and takeoff traffic, getting the aircraft back on the f
! proper surface, and in unloading passengers and cargo. The details of f
R A each overrun incident are normally quite different and each requires a A,
y different solution. In some cases, the airplane can be unloaded and then 'J
§
towed by a normal tug back to the runway, taxiway, or ramp. If the A
aircraft s severely damaged or passengers injured, then more F‘
sophisticated equipment such as rescue vehicles, cranes, special dollies, -
4
; etc. are required to tend to passenger needs and to remove the aircraft N
; to a place of repair or disposal. :

\d
A

The material beyond the runway is wusually soil. Soil (clay or

NI

sand) surfaces are very unpredictable 1in their arresting capability

because their properties are very sensitive to moisture and temperature K
X conditions. Very dry clay can be hard and nearly unpenetratable, and wet A
clay can cause the aircraft to mire down quickly, causing the landing x,
gear to collapse and leading to further aircraft damage and potential for i
passenger and crew injury as well as the potential for a fire. i
, Z
g From the above discussion, the objective of this study is to find a §
: means of safely stopping the aircraft during an overrun. The arrestment .
A of the aircraft should minimize structural damage and reduce the time S;
required to get the aircraft back on the normal operating surface. The e
3 recovery from an aircraft overrun incident should be predictable and b:
disposed of in a short time with little hazard to passengers or crew. ;:
- The arrestment system should be easily repaired and have a long service E;
» life. 1Its cost should be commensurate with the potential aircraft damage 7]

and airport runway downtime costs.

-
" R N 2 I S AN, PG O P S AP 0 i 0 O P . P P P SR R oS N R S S SO R PR PR G S LA T
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The primary tasks of the feasibility program for a Soft-Ground
Aircraft Arrestment System are to:

1. Develop functional design criteria for the arrestment system.

2. Determine the tire/material interface model for water, foam, and
gravel. Tire/material models for <c¢lay and sand are already
available from other programs.

3. Select the most promising materials for the arrestor system.

4. Apply the selected material to a broad range of aircraft weights.

5. Determine the installation method for the final arrestment
materials selected.

6. Develop an experimental program to validate the prediction
methods used in the analysis.

The computer code FITER [1], developed for the United States Air
Force, AFWAL/FIEM, was modified to accommodate the various tire/material
models for the arrestment simulations. This computer program models the
six airplane center of gravity degrees of freedom, gear loads, and the

flexible structural response at selected locations.

Section 2 of this report describes in detail the first three of the
above tasks and the results obtained. Section 3 describes the results
obtained from the simulations of all aircraft being arrested by foam and
gravel beds. Section 3 also describes the arrestor bed and
installation. Section 4 provides the conclusions and recommendations
resulting from the study. Appendices A through D provide the results of
the literature review, description of the aircraft and the experimental

test for the foam material.
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SECTION 2
ARRESTOR BED MATERIAL SELECTION

Each task of the Soft-Ground Aircraft Arrestor System listed in
Section 1 will be discussed in detail in this section. The aircraft
weight range included in this study was 102,000 to 630,000 pounds. For
economic reasons, only one aircraft, Aircraft A, was used for the
arrestment simulation to select the arrestor material, and then simula-
tions of four additional aircraft were used to demonstrate the capability
of the arrestor made of the selected materials. The aircraft weight,
inertia, and gear load characteristics are presented in Appendix B.

2.1 ARRESTOR DESIGN CRITERIA

Evaluation of the materials (clay, sand, foam, water, and gravel)
selected for the arrestor system required that design criteria be
established. The design criteria selected for the arrestor are shown in

Figure 1. The reason for their selection is discussed in the following

paragraphs.

.

el
\

J

2.1.1 Braking and Reverse Thrust

Aircraft braking and engine reverse thrust were neglected because
the scenarios (see Appendix A) derived from overrun incidents indicated

g‘""': ': IO, J L

that a very low surface coefficient of friction existed as a result of

M S

the ice/snow/water on the runway, or that the overrun was due to a
takeoff abort where engine reverse thrust might not be available.
Neglecting these possible means of stopping the aircraft provided
assurance that the distance estimated to arrest the aircraft would be

conservative.

2.1.2 Gear Loads

sy

If damage to the aijrplane is to be minimal as the result of an ;:
encounter with an overrun arrestor system, then the landing gear should ;
not fail (collapse). Keeping the gear loads below 1imit loads for the {5
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arrestment provides a high probability of a safe arrestment with minima)l
structural damage. Keeping the landing gear intact also reduces the
probability of a wing fuel tank rupture and fuel spillage on those
aircraft having engine pods on the wings. Retaining fuel in the fuel
tanks during an overrun greatly reduces the probability of a disastrous
fire.

2.1.3 Aircraft Deceleration

To be efficient, the arrestor system must stop all potential
overrun ajrcraft within reasonable distance. The FAA Safety Area of one
thousand feet beyond the runway end was selected as the maximum distance
to be allowed. This would require an average aircraft deceleration of
about 0.22 g's for an entry speed of /0 knots to assure a complete stop.

2.1.4 Accessibility by Ground Equipment (Fire/Rescue/Crash Vehicle)

The arrestor system should not prevent fire/crash/rescue vehicle
access to the immediate area of the aircraft in the event of a fire or
need for rapid removal of possible injured personnel. It should not
prevent the evacuation of passengers and crew.

2.1.5 Rapid Repair

Should an incident occur, the arrestor system capability might be
degraded and require repair prior to being put back into operational
readiness. This repair should be easily accomplished and should be
accomplished in a short period of time so as to be available for the next
incident.

2.1.6 A1l Weather Operation

The arrestor system performance should be insensitive to the
weather extremes from -65°F to 150°F, in rain, snow, or ice. Snow and

ice removal should be Timited to only heavy accumultations.
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2.1.7 Ease of Maintenance and Long Life

Maintenance of the arrestor system should be minimal. Periodic
inspections may be required to assure nothing has caused a change in the
arrestor performance. Exposure to the natural elements should cause no
change in performance.

2.1.8 Unattractive to Earthly Creatures

The arrestor material should be treated to be naturally
unattractive to vermin, birds, or other undesirable creatures which might
degrade the material or be hazardous to aircraft operations.

2.2 DETERMINE TIRE/MATERIAL INTERFACE MODEL

The tire/material interface model 1is vrequired to couple the
arrestor to the aircraft so that the deceleration, loads, and dynamic
response can be determined. This tire/material interface was
accomplished from a review of the literature [2-5] for sand and clay,
water, foam, and gravel. Refer to Reference 2 for details of the
tire/soil model, since it is rather complex and too lengthy to duplicate
in this report. For water, foam, and gravel, the tire/material interface
model is shown in Figure 2.

The drag and vertical forces induced by water, gravel, or foam are
a function of the density of the material, the horizontal velocity (V) of
the wheel axle, and the verticdal and horizontal projected areas of the
tire exposed to these meterials. The projected areas of the tire are
(Figure 2):

S*H (M

>
]

where H=12-§ (2)
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and ét = Zp~Zw (3)
= S
Aw S*W*. 66 (4)
_ pl_ io0_ 2 2 o 12
where W= R -(R ZM + 6t) R (R 6t) (5)

The value 0.66 (Eq. (4)) 1is introduced because the tire projected
horizontal area is not rectangular iike the tire frontal area and other
tire/material interface inefficiencies for a 1ifting surface. This
number should be verified by test in the final selected materials.

The vertical and drag forces are equal! to the pressure on the
projected tire areas. These pressures vary with the type of material.
For foam, the pressure is equal to the crushing strength plus the dynamic
pressure. The crushing strength is determined by forcing a plate of a
given area into the foam and recording the force as a function of time or
displacement. Figure 3 shows an example of how the foam crushing
strength s determined. The pressure is also a function of the
horizontal velocity (V) of the wheel, i.e., p = Pt 1/2pV2, where
p 1is the mass density of the foam and p_is the crushing strength.
The density of foam is very small so the ;ynamic pressure term can be

dropped and the vertical and drag forces are (see footnote):

F, = pc*AN*CL (6)

-n
n

w
pc*AF CD ("

For water, the only pressure is the dynamic pressure, but for
gravel, there is a crushing strength (equal to about 22 psi) anu dynamic
pressure. Water has a density of (62./32.2) slugs/ft3 and gravel has a
density of about (90./32.2) s]ugs/fta.

Cp and C_ are assumed to be equal to one. Tnie assumption should be
verified.
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When the tire 1is deflected, the vertical force FV also has a

component equal to Fv = Két where K is the tire spring rate. This

is added to the gravel or water pressure force to obtain the total
vertical load.

The above equations were introduced into the computer program FITER
so that the deceleration, gear loads, and structural dynamic response

could be determined.
2.3 SELECT ARRESTOR MATERIAL

2.3.1 Clay, Sand, and Water

The arrestor materials were selected using the design criteria
(Figure 1) as a basis and for the ability of materials to stop aircraft
in the shortest distance. C(lay, sand, and water had some major faults in
meeting the design «criteria but were, nevertheless, considered
candidates. Clay, to be effective, would have to be in the CBR range of
2 to 3 and this would be very difficult to maintain under all weather
conditions. At temperatures below 32°F, the water in clay could freeze
and clay will be useless as an arrestor. At temperatures above freezing,
clay would dry out quickly, requiring considerable water addition anrd
reworking to maintain the required strength.

Sand, on the other hand, would have to be relatively dry to be
effective. Maintaining the dryness would be somewhat easier but it would
have to be contained in waterproof/airtight bags which would be easily
ruptured in the event of an overrun. Rain or snow could fiii the
junctures of the individual bags, making the sand less effeciive in ‘the
event of freezing weather.

Water ponds suffer from problems of stagnation to being attractive
to various creatures. In the colder climates water ponds would be
subject to freezing, making them ineffective. Access by
rescue/crash/fire vehicles or evacuation of passengers would also be
difficult.
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Arrestment simulations were conducted, however, to determine the
effectiveness of clay, sand, and water 1in their ideal conditions. Only
one aircraft (see Aircraft A, Appendix B) was wused to obtain the
deceleration characteristics.

Figures 4 and 5 are plots of the aircraft deceleration (in g's)
versus horizontal distance traveled (in feet). The clay and sand
arrestor beds start at 100 feet as indicated by the steep rise in the
deceleration. The smaller increase in deceleration at the beginning of
the arrestment was due to just the nose gear being in clay or sand. The
oscillations are due to the dynamic characteristics of the aircraft being
excited (primarily the pitching mode) when the wheels sank into the soil
after leaving the runway. The stopping distance was approximately 650
feet in the clay bed and about 600 feet in the sand bed. The aircraft
1imit loads for the landing gear were not exceeded during the arrestment.

Figure 6 describes the pond elevation configuration used to
determine the deceleration characteristics of water. Figure 7 indicates
the aircraft deceleration obtained. Since the only pressure acting on
the wheels is the dynamic pressure (p = 1/2pV2), the deceleration is
reduced as the velocity decreases. At very low velocities, less than 20
knots, the dynamic pressure becomes very small and long distances are
required before the aircraft comes to a stop. At the higher speeds, the
dynamic pressure is quite high and produced nose gear loads in excess of
1imit loads. Entry speeds into the pond would be limited to about 50
knots in most cases because of the gear loads.

The limitations and faults of clay, sand, and water in terms of the
arrestment system design criteria were considered to be excessive and
these materials were therefore discarded as potential arresting materials.
2.3.2 Gravel

Gravel mat:rial of smooth-surfaced pebbles graded to ASTM

D448-86 [6] size number 57 avoids many of the faults of clay and sand.
The pebbles are large enough that the voids allow adequate drainage so

n
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that freezing in the milder climates would not be a problem. The bond
which might occur under very 1light freezing conditions 1is easily
broken [4] so that the performance parameters as an arrestor would remain
reasonably constant. Gravel spray from landing gear (FOD) may be a
problem for aircraft engines unless controlled.

Simulations of Aircraft A were made using a gravel bed
configuration as shown in Figure 8. The entry speed for the simulated
arrestment was 70 knots. An idle thrust of 3,000 pounds was also assumed
to be acting on the aircraft. Figure 9 shows the aircraft deceleration
characteristics in the gravel bed. Initially, only the free rolling drag
is providing the deceleration. The nose gear then contacts the gravel
bed and a slight increase in deceleration is obtained. The steep rise in
the deceleration curve 1is obtained when the main gear penetrates the
arrestor bed. A maximum deceleration of about 0.68 g's is obtained. The
deceleration decreases as the aircraft velocity decreases until the
aircraft stops. The velocity profile of the aircraft during arrestment

is shown in Figure 10.

Figure 11 presents the rut depth profile of Aircraft A while in the
gravel arrestor. The nose gear began planing at the higher speeds and
did not reach full penetration until the aircraft velocity was less than
50 knots (see Figure 10). The main gear wheels also planed in the gravel

arrestor.

The planing of the nose and main gears in the gravel arrestor is a
function of the tire projected horizontal area and the tire Tift
coefficient which was assumed to be equal to 1, but this is probahly not
true. The actual value is probably less but is unknown at preseat.

The Tlanding gear loads developed during the gravel bed arrestment
are shown in Figure 12. The peak nose gear vertical load obtained was
about 45,000 pounds, and this exceeds the 1imit load of 44,400 pounds
provided by the aircraft manufacturer. However, this peak load is a
result of the nose gear planing and climbing the gravel bed grade. The
nose wheel then comes down rather sharply, contacting the underlying
surface, causing a sharp increase in load. Now, if the wheel planing is
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less pronounced, as suspected, the vertical peak loads will be reduced
and they wilil, most likely, be within design limits.

The drag limit load for the nose gear is 25,600 pounds, and it was
also exceeded slightly for Aircraft A. The main gear drag and vertical
loads for Aircraft A are well within the 1limit loads of 62,800 and
167,470 pounds, respectively. There is no concern of main gear collapse
as a result of the gravel bed arrestor imposed loads.

Even though tne nose gear loads exceeded limit loads by a small
amount, the prospect of nose gear collapse is not likely since that would
require the loads to exceed the ultimate strength of the gear and gear
support. The ultimate loads are 1.5 times the 1imit Jloads, and the
computed loads are considerably less than those values. The aircraft
manufacturer would have to be consulted to determine the ultimate loads.
With the above factors in mind then, it would appear that a gravel bed is
a potential candidate as an arrestor.

2.3.3 Foam

Polystyrene foam was also investigated as a material having
potential as an aircraft arrestor. Several polystyrene products were
tested in the laboratory by impacting a 2-inch-diameter plate into the
foam sample and recording the displacement and force that occurred
(see Figure 13). Results obtained from the plate tests were similar to
those shown in Figure 3. Appendix C describes the foam tests in detail.
The two parameters of concern were the crushing strength of the foam and
the amount of recovery after the load was removed. The products which
crushed and showed very little elastic recovery were desired since this
provides a maximum of energy dissipation. One product was found which
exhibited the required characteristics as shown in Figure 3, and the
characteristics of this product were used to conduct the arrestor
simulations.

Initial simulations of Aircraft A were conducted using the foam bed
configuration shown in Figure 14.
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Figure 13. MTS Test Setup for Foam Sample
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The purpose of the foam compression depth shown in figure 14 is to
maintain a continuous zero runway profile elevation. The foam crushes at
a nearly constant stress until it is compressed to 80 or 90 percent of
its original depth. Beyond that depth, the foam becomes quite rigid and
this compressed height would then act as a runway surface elevation
change and induce additional loads. Some additional studies, however,
indicate that the increase in the runway surface profile elevation by an
amount equal to one-tenth of the foam bed elevation does not
significantly affect the gear 1loads. This will be discussed further
under the foam arrestor bed configurations.

Figure 15 shows the deceleration of Aircraft A in a foam arrestor
having a crushing strength of 45 psi. The entry speed of the aircraft
was 70 knots, and an idle thrust of 3,000 pounds was assumed to be acting
throughout the arrestment. The deceleration reaches a value of slightly
more than 0.5 g and remains essentially constant during arrestment. This
characteristic indicates that the foam bed is efficient compared to other
materials tested. The other materials generally showed a considerable
variation in the deceleration as a function of distance.

The velocity profile of Aircraft A during the foam bed arrestment
is shown in Figure 16. This indicates that the zero velocity was reached
in about 430 feet (the foam bed starts at 100 feet).

The landing gear loads are shown in Figures 17 and 18. Figure 17
shows that the nose gear loads are well within the 1limit loads for
Aircraft A, and Figure 18 shows that the main gear loads are also below
1imit values. (Limit values are given in Appendix B.)

Figure 19 shows the rut depth was a maximum of 20 inches and that
there was no evidence of planing in the foam bed as occurred with gravel.

The foam arrestor bed is clearly the most efficient of all the
materials selected for evaluation. According to the foam manufacturer,
the material is very stable over a temperature range from cryogenic to
165°F. The material has a flame retardant additive included to minimize
the possibility of a fire. Foam is certainly a viable candidate for an
arrestor system.
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SECTION 3
ARRESTOR CONFIGURATION SELECTION AND SIMULATIONS OF ALL AIRCRAFT STUDIES

;';‘.#‘-' ‘

In Section 2 of this report, it was determined that only two
materials had suitable characteristics to decelerate aircraft during an
overrun. The materials were gravel and foam. However, only one aircraft
type was used in selecting the materials and, to be useful, these two
materials must be capable of arresting a broad range of aircraft types
covering the gross weight range of current commercial aircraft. It is

R

PR

also necessary to determine whether aircraft which undershoot the runway
will be adversely affected by the arrestor. The work accomplished to
satisfy these requirements is described below. Aerodynamic lift-and-drag
was assumed to be in effect throughout the arrestment.

XA

&

3.1 GRAVEL ARRESTOR

ree

5

’l .}1.

Simulations of arresting the five aircraft described in Appendix B
were conducted using the gravel bed described earlier (Figure 8). The
entry speed into the arrestor bed was 70 knots and an idle thrust of

2

AN
A
* .
-

3,000 pounds was assumed in all cases.

PAENNEAD
ERr A

A

3.1.1 Aircraft A

A2

x,

The results of the simulations for this aircraft were presented in
Section 2.

y {l '-l-.‘ .

«

3.1.2 Aircraft B

Figure 20 shows the deceleration of Aircraft B as a function of
distance. The maximum deceleration was about 0.67 g's. This curve is
somewhat different than the one obtained for Aircraft A in that it is
quite smooth. It demonstrates the constant gravel bed slope and the
gravel dynamic pressure effect. Aijrcraft B did not plane in the gravel
and all wheels remained in contact with the extended runway surface which
supports the gravel (Figure 21), thus providing a smooth deceleration.
The total distance traveled in the gravel was about 440 feet as shown in
Figure 22.
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N
The maximum gear vertical loads while in the gravel bed (Figure 23) ;‘

were always below the limit loads imposed by the manufacturer of the ‘

aircraft (see Appendix B). The nose gear drag load was slightly N

excessive but is satisfactory considering the analytical accuracy of the E
simulation. f;

Figure 24 shows the acceleration levels in the vertical plane at ;

, the pilot's position and at the center of gravity of Aircraft B. The <
; . acceleration levels are quite low, indicating a rather smooth ride while 2
) in the gravel arrestor. é
3.1.3 Aircraft ¢ 'E

>

' Aircraft C is somewhat larger than Aircraft A or B (335,000 pounds) E
and the gravel bed produced less deceleration (0.48 g's) as shown in }

Figure 25. Aircraft C has a four-wheel truck for the main gear E

(dual-tandem) and only the two wheels on the front axle are effective in -

producing drag unless the front two wheels of the truck plane in the ;{

gravel. Then the two rear wheels will also produce drag in the remaining Nl

gravel below the rut »f the front two wheels. This Jlatter effect ;;

(rutting) of the two front wheels of the bogey planing is included in the jﬁ

- computer simulation, but it did not occur for this aircraft as shown in f
‘ Figure 26. Figure 26 shows that all wheels stayed on the extended runway ‘"
surface supporting the gravel for the full aircraft arrestment since the E;

full gravel depth was used. i;

X Figure 27 shows the velocity profile of Aircraft € and shows that -
N Aircraft C traveled approximately 600 feet in the gravel bed before it Ei
) came to a stop. g
+ The landing gear 1loads produced during the gravel arrestment of 9
. Aircraft C were all less than the manufacturer's 1imit loads (see N
; Appendix B). This result is shown in Figure 28. It should be noted that ;:
3 the loads shown are axle loads for the main gear truck. The vertical i
axle loads on the main gear are nearly equal and not distinguishable on ~ 3

\ the graph. The drag loads on the main gear show that the front axle :E
8 35 Y
, :\
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wheels produced the major portion of the load and that the rear axle
wheels produced almost no load. The reason for this result is that the
rear wheels were in the rut formed by the front wheels of the bogey.

The high frequency oscillation shown for the main gear vertical
loads is primarily due to truck pitching and it may not occur on the real
aircraft. The damping on the truck beam was estimated in the computer
analysis and may not be realistic for the aircraft. The problem is a

minor one in any case.

Figure 29 indicates the ride quality during the gravel bed
arrestment of Aircraft C. These acceleration levels are minimal and of
no concern for this aircraft.

3.1.4 Aircraft D

Aircraft D has a landing gear configuration similar to that of
Aircraft C. The nose gear has dual wheels and the main gear consists of

a four-wheeled bugey (dual-tandem).

The deceleration of Aircraft b is shown in Figure 30. The peak
deceleration was about 0.43 g's. The initial part of the deceleration
curve shows a characteristic planing of the nose landing gear, and this
is substantiated by Figure 31 which indicates that the nose gear did
plane during the early part of the arrestment. This, of course, reduces
the effectiveness of the arrestor. Figure 32 shows that the Aircraft D

stopping distance was about 675 feet in gravel.

A1l gear 1loads for Aircraft D were well below the manufacturer's
specified 1imit loads. The gear loads during the gravel arrestment are
shown in Figure 33. As with Aircraft C, the axle loads have been plotted
and, since the main gear vertical loads for the front and rear axles of
the bogey are almost equal, the plot appears as only one curve. The drag
loads on the main gear axles are significantly different as in the case
of Aircraft C.
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Figure 34 shows the vertical acceleration levels obtained at the
cockpit and center of gravity locations 1in the aircraft. The
acceleration levels are relatively small and are well below the normal

tolerance level. d

3.1.5 Aircraft E

Aircraft £ 1is the largest aircraft simulated 1in this study.

%

- Aircraft E has a gross weight of 630,000 pounds and has both wing mounted 4
j and body (fuselage) mounted main gear. The main gears are located on

i

different butt lines so that they do not track in the same plane. This
makes the wheels of the leading axles all effective in producing drag.

? Figure 35 shows the peak deceleration was about 0.49 g's, and Figure 36 .
?\' shows that the aircraft remained in contact with the extended runway !
S surface throughout the arrestment (no planing).

'2 Figure 37 shows the velocity profile of Aircraft £ during the ‘
:ﬁ gravel bed arrestment. From this figure, it is also evident that the X
‘é stopping distance was about 560 feet in the gravel bed. ﬁ
E Limit load data for Aircraft E landing gear are not available but i
T: the loads obtained are on the same order as those obtained on Aircraft O

- which were well below 1imit values. The landing gear loads are shown in

‘, Figure 38. It should be noted that the Tloads are plotted as gear loads S
f rather than axle loads because of a plot program limitation. The loads ’
; shown in Figure 38 are double for the main gear because the computer

'3 program FITER does not allow more than three struts, so only half of the

g aircraft is simulated. The nose gear loads plotted are true value. ‘
g The dynamic response of the aircraft was not computed because the ;
?, computer program does not have the capability to establish the initial .
l static gear loads. At present, the static loads are estimated which is a
$ sufficiently accurate for the analysis but not for the dynamic response R
% purposes.
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;; 3.1.6 Gravel Arrestor Bed Summary
The gravel bed arrestor performance appears to be suitable for i
: stopping commercial aircraft during an overrun «t entry speeds of 70
;?F knots or less. The relatively low cost of the material makes 13t
,f attractive for use as an overrun arrestor in areas of the United States
-\\ (and other parts of the world) not subject to heavy freezing. The
. ability to access the arrestor with fire/crash/rescue vehicles has not
?‘ been evaluated in detail, but it would appear that some problems might
- exist. British tests, however, indicated that their fire/crash/rescue
- vehicles had no difficulty in maneuvering in the gravel bed arrestor.
Gravel spray from the nose gear could cause engine damage if :
pebbles were ingested. The spray could also impinge on flaps, gear doors
and struts, and hydraulic or electrical Tlines This latter type of
'2; damage is expected to be reidatively minor.
&
) The gravel arrestor is relatively inert and therefore would cause
d 1little <concern from an environmental standpoint. Gravel is also
5 noncombustible so that it would not contribute to fires should they occur. :
?f’ Long term problems with gravel such as compaciion, dust
" accumulation, and others have not been evaluated in this study, but it
.. certainly should be done before the gravel bed arrestor is considered
%; acceptable.
- 3.2 FOAM ARRESTOR
'5 Simulations of the rive aircraft described in Appendix % werc aic<o
fi conducted using a foam material as the energy adsorber. Several foam ;
- arrestment bed configurations were tried, but the configuration finally ,
e selected is shown in Figure 39. This bed is 24 inches ceep and consists
Z: of a bottom layer, 12 inches thick, having a crushing <trength of 60 psi,
;i and a top layer, also 12 inches thick, having a crucsking strength of 45
psi. The arrestment performance for each of the aircraft simulated 1s
%
,j:
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%f presented in the following discussion. ihe entry speed was 70 knots, as
:f before, and an idie thrust of 3,000 pounds was assumed to be applied on
N all simulations.
:-.
3? 3.2.1 Aircraft A
:7;‘ The performance of Aircraft A in the foam arrestor is shown in
2 Figures 40 through 44. Figure 40 shows that the maximum deceleration
‘ﬁi obtaincd was about 0.7 g's and that the level of deceleration was
E; maintained throughout the remainder of the arrestment. The velocity
“i profile during the arrestment is shown in Figure 41. This figure shows
. that the stopping distance in the foam arrestor was 310 feet. Fiqure 42
ij shows the rut depth of 24 inches in the foam made by both the nose and
ij main gears. The nose gear planed for a short distance but then
,:; penetrated the foam fully. Figure 43 shows the gear loads obtained
e during the arrestment. The main gear Jloads were below the manufacturer's
Qt specified limits, and the nose gear loads were only slightly above the
ji. Vimits. There would be 1ittle likelihood of gear failure.
!! Figure 44 shows the aircraft response during the darrestment and
.ij after the aircraft stops. The dynamic response in the forwara area of
S; the aircraft reached Jlevels which would be quite noticeable to the
‘x‘ passengers.
'5: 3.2.2 Aircraft B
‘:E
:;: Aircraft B is the smallest aircraft simulated. A deceleration peak
B of about 0.78 g's was obtained in the foam arrestor as shown in
.i: Figure 45. The wvelocity decay, Figure 46, shows that the ~<topping
’ﬁi distance in the foam was about 300 feet. There was no evidence of wheel
‘f; planing in the foam bed as shown in Ffigure 47 since the full bed depth
. was obtained. The landing gear Tloads on both the nose and main dgears
%; were below the manufacturer's 1imit values. Landing gear loads are shown
“? in Figure 48. The dynamic response (Figure 49) of the aircraft became
ﬁf rather severe at the stopping point, reaching a peak of about 0.8 g.
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- 3.2.3 Aircraft C
L)
f} The deceleration performance of Aircraft ¢ was less than the
(jf previous aircraft, reaching a peak deceleration of about 0.42 g as shown
N in Figure 50. The velocity profile of Aircraft C is shown in Figure 51
£ and the distance required for stopping in the foam arrestor was about 530
feet. Figure 52 shows that the aircraft wheels did not plane in the foam
i§‘ arrestor in that the entire available foam bed depth was used. The
: landing gear loads for Aircraft C were all well below the manufacturer's
1imit loads (Figure 53). It should be noted that the axle 1loads have
f}: been plotted and only the loads for one main gear are shown. The drag
}i loads on the rear axle of this aircraft are very low because the foam was
i; crushed by the Jleading axle wheels. The high frequency oscillations
*} evident on the main gear vertical trace 1is due to bogey pitching.
- Figure 54 shows the dynamic response of Aircraft C during the arrestment
Z;: and after the forward speed reached zero. These levels of acceleration
55 are expected to be tolerable by most passengers.
,,
& 3.2.4 Aircraft 0
2
ﬁ: The deceleration of Aircraft D in the foam arrestor attained a peak
;* value of about 0.33 g (Figure 55). The wvelocity profile during the
e arrestment is shown 1in Figure 56 and the stopping distance in the foam
ﬂi bed was about 660 feet. The aircraft showed no tendency to plane in the
}} foam bed, as indicated in Figure 57. The landing gear loads were all
.L: well below manufacturer‘s 1imit loads. The computed Jloads are shown in
Figqure 58. The bogey vertical loads are nearly egual and the trace shown
i tor both axles, Figure 59 <hows the dynamic response during the
arrestment. No alarming acceleration values were evident during the
arrestment .
ff: 3205 Adrcraft
x The deceleration results for Aircraft £ arrestment in the foam bed
" are showr ‘n Figure K0, The peak deceleration obtained was about 0.38 g
o= whirh i+ consideraply higher than Aircraft D even though Aircraft £ s ]
I )
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o much heavier. The reason for the increased deceleration performance of
’ Aircraft E results from the extra set of main landing gear. Figure 6]
~ shows the velocity profile of Aircraft £ in the foam arrestor and also
i; shows that the stopping distance in the foam was about 575 feet. There
?5 was no tendency for the wheels to plane in the foam bed as shown in
= Figure 62. The landing gear loads are shown in Figure 63. The
- manufacturer's 1imit Jloads are not known for this aircraft. The plotted
fi? loads for the main gear are the total for both axles of the bogey as well
E:E as both struts. The very high frequency results at the end of the
- vertical load traces are due to bogey pitching, and are a result of
A . inadequate damping in the computer simulation. The dynamic response
t;; computed for this aircraft is not accurate because the static loads on
s the main gear were estimated since the system is redundant.
N
- 3.2.6 Foam Arrestor Bed Summary
=
-3: The foam bed is by far the most efficient of all materials
*? evaluated for stopping aircraft as evident from the deceleration of the
o aircraft which is nearly constant over the complete arrestment. The foam
l:f material density is very low so that any chunks that may tear loose and
‘:3 impinge on the aircraft structure are not 1likely to cause damage. The
::; foam material should maintain 1its characteristics over the full
- temperature range encountered in the United States (and other parts of
’55 the world), thus providing dependable arrestments each time regardless of
Eﬁ the local weather conditions. Foam is combustible but self-extinguishing.
Lﬁ The foam for the arrestor is closed~cell and therefore moisture resistant
= although a sealer is desirable. It must be replaced when damaged by an
;:; overrun incident.
~§: 3.3  UNDERSHOOT LANDINGS IN ARRESTOR AREA
Y% There 1is considerable evidence that aircraft pilots touch down
:& prior to reaching the runway threshold. Some airports have safety areas
?5 paved for this purpose as well as for overruns. Tire skid marks are very
= evident in the safety area to prove this point. Since the foam arrestor
:; will be located in the safety area, a determination of the consequences
i:E of landing on the arrestor is required. It was surmised that the smaller
\J
19
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aircraft would most likely be affected by the foam arrestor high drag
characteristics since their pitching inertia would be the smallest. On
this basis, then, a simulated landing of Aircraft B was considered to be

representative of the effects to be encountered.

The 1landing simulation of Aircraft B was made at its maximum
landing weight of 102,000 pounds and an estimated landing speed of about
170 knots. A sink speed of 2.5 ft/sec was used and the touchdown was set
at 500 feet before the runway threshold. Two cases, one with the foam
arrestor in place and one with the arrestor removed, were simulated since
flight control data for the aircraft were not available.

Figure 64 shows the angle of attack history of the aircraft during
the landing without the arrestor in place. The pilot control was set up
in the program to control the elevator position when the angle of attack
changed beyond 0.05 radians. This apparently was too coarse for a smooth
approach but is considered adequate for the purpose here. Figure 65
shows the main landing gear loads upon contact with the surface, showing
that the aircraft bounced after ground contact. The main gear loads are
well below limit values. The touchdown was about 150 feet before the
threshold of the runway.

The simulated landing of Aircraft B with the arrestor in place is
shown in Fiqures 66 to 68. Figure 66 shows the rut depth in the foam
arrestor during the Tlanding. A penetration of about 10 inches was
obtained before the wheels 1left the arrestor and made contact with the
ground. Figure 67 shows the angle of attack history. Comparison of this
figure with Figure 66 shows that there is very little change in the pitch
attitude history. Fiqure 68 shows the gear loads during contact with the
foam arrestor and subsequent ground contact. Comparison of these loads
with those in Figure 65 shows the loads to be very similar. Touchdown
was only about 100 feet before the runway threshold in thic case. This
undershoot landing simulation shows that landing on the arrestor is not
likely to cause loss of control of the aircraft. It should be noted,
however, that this has been only a cursory examination of the undershoot
problem and further analyses should be conducted.
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" 3.4 FOAM ARRTSTOR BED INSTALLATION

During the course of this study, it was assumed that the arrestor
bed would be situated on a rigid base and that it would not move when

e e

contacted by an aircraft during an overrun. It was also assumed that the

ol

foam bed was homogeneous and that there were no spaces in the foam. :
These assumptions translate into installation requirements by requiring :

-

that the foam bed be placed on an extended runway surface having
sufficient strength to not significantly deflect under the aircraft “

P

wheels. This means that the overrun area surface will require a
substantial subgrade of crushed rock and then be surfaced with about .
8 inches of reinforced concrete. However, since the area will receive {

only limited traffic, a construction of less strength than taxiways and q

e

runways could be used.

A WY
|

Figure 69 shows a possible installation layout of the arrestor.
Frangible 1ight systems may be used with the foam cut out to prevent
obscuring the light. NOTAMS should be issued indicating the arrestor is J

v

operational and in place. Normal foot traffic on the foam arrestor is
considered acceptable for repair of lights.

- SufANTINEEDY
ey vy

Attachment of the foam to the surface should be positive. One
possibility would be to attach a wire mesh to the surface with lag screws
through steel straps as shown in Figure 70. Wires could be attached to
" the mesh and then poked through the foam slabs or blocks provided by the

X ARV

foam manufacturer. A thin washer could be placed over the wire and then
the wire twisted so that it would not pass back through the washer. This
arrangement should provide adequate strength to prevent the foam bed from

L3
L)

moving during contact by an aircraft or from the high winds from storms

2 ¥

%
> or jet exhaust. Further details of attachment are best held until some
schemes have been experimentally tried and evaluated.

N Earlier in the report, it was stated that the compressed height of

the foam bed might require that the extended runway be depressed about

hail ¢

0.1 of the bed height so that the surface elevation profile as seen by

R J
f the aircraft wheels would remain at a zero level. An additional N
\.l
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arrestment simulation of Aircraft A was conducted with the surface
profile elevation increased by 0.1 of the foam bed (Figure 39) height
(designated "Rough Surface"). Figure 71 shows the gear loads resulting
from the rough surface. The vertical load is only slightly higher for
the nose gear than obtained by depressing the extended runway surface
(see Figure 43). The drag Joads are less for both the nose and main
gears because the amount of foam depth is decreased as shown in Figure 72
(compare with Figure 42). There was also a 16 percent increase in the
stopping distance (Figure 73) as a result of the decreased foam height.
The stopping distance was 360 feet on the rough surface as compared to
310 feet. It should be noted that increasing the foam depth will
decrease the stopping distance, but it will also increase the surface
roughness. Figure 74 shows the dynamic response of Aircraft A resulting
from the arrestment. The response is about 20 percent higher as a result
of the rough surface as indicated by comparison with the smooth surface
(Figure 44). The acceleration levels are, however, still tolerable.

As a result of the above comparison, it appears that depressing the
extended surface by an amount equal to the height of the foam bed is
beneficial and probably should be adhered to in the foam bed placement.
This should not be a difficult problem since the elevation change would
only be about 2.4 inches.

3.5 ANALYSIS OF RESULTS

Discussions in the first part of the report dealt with the specific
items of the feasibility of an overrun arrestor. However, there are
other considerations which also must be discussed such as the:

1. Improvement provided by the arrestor over just an cxtended

runway,
2. The overall efficiency of the arrestor.

92

e N T e e e e L e et e e e e e T e L LT e L L Te e LN T e T e Y e e e Y
o PN G - - o -

A

PR P T A SN RO

55

¥,

5

SN S Y e

o o T g g

LS Y

..-vr-
% Suts )

&

".r.,,v§- -.‘-‘,-‘-’Azr—‘( ":

.-‘, '[ Y' r')"){ l’- -., -1, o

(4

% ‘._.' ."-.'

s \-' - ./... -\"u_—:,’\,-_-,) 1- \(..(xl\f‘.' - ‘:.

NCSTAC AL

S Ty e U™ T8 v

P

- . - ‘-
AR N N AN A



o in -

?.ﬂ.\tf.-..&}ﬁucﬁ : .fi.. o -b...w .\.-\..h. ..-.». .vi ftf fr. \N- -ﬁf.. J ... ..r......-.... \ x..-\..”..ﬂ.w\”. L&f\-\f-)\u-.-u-\w. ...-...,.. ........\u. .m .”, Y \,...\Mnn\ Y .{\.-\.v..f.-.
S
"
b
h
JUdW3SdA4Y pag weoq e burdng speo] Juean Buipuel y 34eAddly  * |/ dunbid >
(33S) Il -
0l 8 o_ ﬂ m 0 -
B _ i 1 i 1 - 0°0 !
S ! IR 4
1 { . o
i R o
\ ! N I~ nf~
| a’ :
1 i &
1 .. L-.
. —1— 20
[ ! o~
! ! - :
' ' i
‘ ! N
' ! ‘4
LRGN | SN Y SR PSSR T AN Y I o -
OWMI MIWE ¢ — - - ¥°0 o =
OGN NIW b o . > =
—
VUG BN 1 ....... - s .
LN 0N e - - .\..— \.f. 2 H-n
L — .\ . \ \.\I.~ \. .’ .s .— .\ .o ﬁ. _. \—n‘l ’ .
somm A T S T Y I TR RS 190 = %
- A S AR B A SR S ‘
2L U AR S U S U T S . e
8 I N vy ;
\ ] . . - ~ . . m/
. — ‘ . — d — — — — . . . . ’
. / . » — . . h f . . M . m — — — — /.' vy
~-e [ IR \ v V! . . s 2. ~
. v - | . . ) t — Vg 8°0 X
Vi \ W v (I - . Py
VY v V! . Y x
\ Y \f - %
JIV4UNS HINOY v P.n.
SIM 0L = Q33dS AHINI A
g7 000°09L = M9 : 4
0t ;
g0l X m.rm
cd
;
\\b\.
Y]
2




-<-nlh!l

’ &

d . \-‘.ﬂ..r).-.‘.waum,t 1\5-7-. n*,-h. _ e J..v. u-.! 4 ..l .”. 'y .ﬁ\-a\. 7 S KR KN

pag weoq ut yidsQg Iny Yy Ijedduty 2/ 34nbiy
(L4) 30NVLSIO
0001 008 009 @¢ Ewm 0
1 _ i _ 1 L —— 0
] | I ] i
: -
: —— S
. -
: —t— ot
=
: -
, : g
: —— Sl
3 : |
] €1
: 0
g .. 0
; NIW Ot ... - u
y WOH  —— B
3 emn 1 §¢
3 30V44NS HINOY . i
3 SIM 0L = Q33dS AYINI =
971 000°991 = MD 0
Ay e - | - ? AN oY

("NI) HLd3Q 1Ny

94

H% Ny

W,
>

WO LEEN

oS

RN

-f.’.

»!

»

- 'S
'.’\I\. o

LRI

. e . .
A A N N TN




) - o - — -

R oy Ty } X S RAN Ly v () v, . \..<~.x‘.. x
LA BN DALY Ll L r'h\\\nnl\ - . l--n--nn»lr»..-.-.-'.-.. —da .\\\\.--.- RIS Al \-t-*.\--\.-.\\ P [ A S -\-\i

JUBWISSUAY PIg Weoq © Burang a(Lj04d AILD0[8A ¥ 3404041y g/ dunbidg
(14) 3INVLSIC
0001 008 009 00v 00¢ 0
Il 1 1 o | | 0
JY3H
bLYV1S WY0d 0z
oY
<<
m
—
- 3
— Cal
- (=)
-
09 =
A
3
w
= m
[gp]
08
00t
30Y4UNS HONOY -
SIX 0L = 033dS AYIN3 /l
87 000°09L = M9
0c¢l

G

L

",

- v
A

~ '(‘..-'. J'«I‘

Pl o L Lol

Y

Al

T 'ﬁ't‘([ _'(,;4‘._-(‘.

! f -1' S P N '.{-‘; .

W, E P LR

AL R X

v



Ny

G N

-~
-'-‘""

(%

JUBWISIALY POy wWeo4 © Butuang asuodsay OoLweudg y 34Pa04ly L adnblL4

it NI et ety
TR U R a iy TaTa o da TP,

L XA T A

(23S) IMIL
8 9 1% ¢ 0
L 1 — 1 _ 1 _ ] .
_.lv
_ [ | 0
-

. b

M [ep]

L) 4 3

: .01 - 2

: ¥ : o

) : z

. N .Il._
L o :
§ = L.
g o o
L -f
.A-,
mf.
X
—'
«
L ..\...,
JIYINS HONOY 430 20Nd t —— L ;
SIM 0/ = 0334S AYLIN3 | “
g7 000°091 = M9 amn o
0t e
4
7
o
"
?
NS
Jq
’,
J\-J-.UH-M- " \..\r\,.\......\...\.- uu.hrﬁ Nﬂ. 2 .r.f\-.-s-.-lff * -\.\.u.-ﬁ..\.!.- ) Lr-.J.J.... J. ..- w-'-n\f\ .v.-... NNy \......f\nh ...u . -.NJ- -._.i.s..‘.-.u wﬁ.f. .‘\

o . v, 3 A S Aala s 8 A A



ChGL St Al Sl SR S Syt p0s g spRas) g pAp S0 00 0 0 0 0l At A S ONIC MO A gt 70 gt 0 o' 0 0 0 g 0 g gD WK

N
=
N
;
E 3.5.1 Arrestor vs Extended Runway
A
3 The addition of 1,000 feet of runway surface certainly would '
:2 provide a sufficient distance for a safe stop for some aircraft under
b3 normal runway conditions or aircraft speeds. It is relatively easy to
vl determine the amount of deceleration required to stop an aircraft in a '
¥ specific distance for a given initial velocity. Figure 75 is a plot )
55 showing deceleration versus stopping distance for various velocities. ]
:: This plot shows that a deceleration of at least 0.11 g must be maintained
~ for speeds greater than 50 knots if the aircraft is to stop in 1,000
. feet. For an airplane weighing 160,000 pounds, the main gear would ;
: support about 144,000 pounds requiring a surface coefficient of friction, ;
E w=20.12. For ice or show covered runways or very wet runways, this 4
o coefficient of friction cannot be achieved and a distance greater than
- 1,000 feet would be required to stop the aircraft. Since the scenarios
'k' from the 1literature review (Appendix A) indicated that most overruns
.? occurred under these types of conditions, an arrestor appears to be
E necessary for assured safe stopping of aircraft.
rd
; 3.5.2 Arrestor Efficiency '
> 1
- From the analysis conducted earlier in this section, the nose gear '
’ of the smalier aircraft approached limit drag values while the main gear
% were taxed to a much lesser degree. To be efficient, the arrestor should
. have loaded both the nose and main gear to near 1imit values. The reason
: this cannot occur, of course, is the fact that the nose gear on most

aircraft are not designed for braking 1like the main gear. Figure 76
. shows a comparison of the expected loads in the foam arrestor and limit
loads for all simulated aircraft.

Another factor concerning the efficiency is that a bed 150 to 200

N

ﬁ: feet wide by about 800 feet long and 2 feet high is required when the

: total wheel track volume in the arrestor during an incident is only a

N small portion that total volume. This large arrestor bed area is

. required because the aircraft may not stay on the centerline of the :
K", .
Ajﬁ ‘
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runway during an overrun incident. Table 1 shows the wheel rut volume
required for each aircraft to come to a complete stop as well as the
percent of the total bed volume used. "

! TABLE 1

K COMPARISON OF RUT VOLUME WITH :'
ARRESTOR TOTAL VOLUME ”
o
| e
AIRCRAFT  NOSE NOSE MAIN MAIN TOTAL % OF Yy
RUT RUT RUT RUT VOLUME TOTAL BED .

LENGTH  WIDTH* LENGTH  WIDTH*  OF RUTS** VOLUME
(FT) (FT) (FT) (FT) (FT)3 (240000FT3) "
3 A
A 370 2.5 310 6.7 6004 2.5 A,
- ’
B 350 1.5 300 6. 4650 1.9 ¢

r

590 3. 530 8.0 12020 5.0 2

F

: 0 725 3.2 660 8.4 15728 6.5 E
1 £ 660 . 575 16. 23680 9.8 R

*Space Between Dual Wheels Was Estimated. -
**Assume 2 Feet Deep Overall Entry Speed 70 Knots. -

won s 3 X

The above inefficiencies in the arrestor bed could be overcome by more g
complex arrangements which would allow the main gear to pick up -
additional drag loads. For example, a cable might be picked up by the

main gear and this cable attached to drag devise. The type of system

A would improve the system efficiency and would certainly shorten the

aircraft stopping distance. Studies of such alternate types of arrestors
were beyond the scope of this study but they should be considered in the

overall feasibility studies.

~
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3.6 SUMMARY OF RESULTS

In general, it was found that aircraft can be safely stopped in
less than 1,000 feet for overruns with initial velocities of 70 knots or
less using foam or gravel arrestor beds. Table 2 shows the distances
traveled in the foam and gravel arrestor beds for the five aircraft
simulated. This distance does not include any safety area distance
traveled prior to making contact with the arrestor. This latter distance
must be added to the figures in Table 2. These results show foam
arrestor bed to be the most efficient system.

TABLE 2
DISTANCE TRAVELED BY AIRCRAFT DURING ARRESTMENT

AIRCRAFT  GRAVEL FOAM
BED (FT) BED (FT)

A 475 310
B 440 300
C 600 530
D 675 660
E 560 575

Aircraft landing gear loads were, in most cases, less than limit
loads and certainly below ultimate loads so that landing gear collapse
should not occur as a result of contact with the foam or gravel
arrestors. The nose gear was always the more critical component. This
lack of structural failure greatly reduces the risk of o fuel tank
rupture and potential for a fire.

Foam bed repair in the event of an incident will only affect about
10 percent or less of the total volume of the arrestcr bed. Gravel bed
repair will probably be limited to regrading to the r.oper slope.
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Foam and gravel bed installations require a rigid base to assure
that gear loads are not exceeded due to sinkage (or ruts) in the extended
runway surface. The foam arrestor bed must be firmly attached to the
base to prevent damage due to high winds or jet exhaust. The gravel beds
may require protection from jet exhaust if the velocities are too high.

The foam and gravel arrestor beds should be at least as wide as the
runway to assure aircraft capture for off-center entries. Satisfactory
arrestments for aircraft being +50 feet from the runway centerline are
considered to be within the scope of this study although only centerline
engagements were analyzed.
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SECTION 4
CONCLUSIONS AND RECOMMENDATIONS

4.1  CONCLUSIONS

1. Both foam and gravel materials are viable candidates for

aircraft overrun arrestors. Both materials have the potential to safely

*WII‘

stop aircraft over a broad gross weight range, in less than 1,000 feet
for entry speeds of 70 knots or less. A soft-gqround aircraft arrestment

A

system is considered feasible.

2. Wheel/foam and wheel/gravel analytical models need to bhe '

verified by experimental testing. :}

' "

3. Analysis of rescue/fire/crash vehicle mobility on the arrestor

material is required. Reference 4 indicates adequate mobility on gravel,

and Reference 5 indicates adequate mobility on foam.

4. Other foam arrestor bed configurations and foam crushing
strengths should be examined to determine a more near optimum gear load
distribution for all aircraft. Contact of other parts of aircraft

YT 4G SN Y

components should be more thoroughly examined to assure that they are not
compromised by the arrestor.

5. The gravel bed configuration requires closer scrutiny to assure

R A I

aircraft components other than the landing gear are clear at the distance
the aircraft penetrates into the bed. Other gravel bed configurations
are certainly possible and may be desirable. FOD may be a problem for

)

gravel arrestors.

»

4.2 RECOMMENDATIONS

A"-" "' "l" A .‘- Y ‘e ," N

; Conduct an experimental program to verify the analytical wheel/foam
and wheel/gravel models. Appendix D describes a plan to validate both

the foam and gravel arrestor prediction methods. Full scale aircratt ft

N

arrestment tests are also recommended anu they are briefly described at

the end of Appendix O.
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3) APPENDIX A
- LITERATURE REVIEW OF SOFT-GROUND AIRCRAFT ARRESTMENT
‘..
:: SYSTEMS AND REVIEW OF AIRCRAFT OVERRUN ACCIDENTS
N
-
INTRODUCTION
(%]
»
'x The reports provided by the FAA Project Engineer concerning
‘e
¥ ; soft-ground aircraft arrestment systems were reviewed to determine if
they contain data useful for this program. The program requires that the
‘53 dynamic gear loads and deceleration be determined for various weight
:‘; classes of aircraft while operating 1in the overrun material. The
D)
-: computer simulation includes modeling of the landing-gear tire/soft
1 ground material interface and, therefore, very specific information was
N needed. It was not expected that this specific type of data would be
j~ found, nor was it found. However, very useful information was found in
A
terms of basic supporting strengths of materials, stopping distances of
3& aircraft, advantages and disadvantages of materials, plus many others.
o~ The report review was considered quite useful in supporting this program.
o
-
.c: The accident computer printouts were reviewed and summarized.
A
. DISCUSSION
r-':"
::f The primary materials used for overrun arrestment systems were
}3 gravel and urea formaldehyde foam. Water ponds were also tested as a
b, source for arrestment. Soft clay, tilled, was also considered as an
' J arrestment material and has been demonstrated in several actual aircraft
'g overruns. However, from the report review it was determined that the
R inconsistency of natural material properties sometimes led to loss of
. aircraft through gear failure. It appears that a material with
:j consistent properties that will yield predictable aircraft stopping
::: distances without damage to the 1landing gear or aircraft would be
)
N required. It was also mentioned that the use of auxiliary equipment,
- tail hooks for example, should not be required for the aircraft.
b
-
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o
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From the literature review,

it was concluded that the use of soft

materials was attractive as decelerators, but that much work in terms of

quantifying the aircraft deceleration resulting from operation in the

material was required.

Brief summaries of the reports and the accident data are provided

in the following pages.

SUMMARY OF OVERRUN ACCIDENTS

Aircraft/ T.0./ Runway
Weight Date Land Condition Comments
DC-8-1 07/20/83 Landing Wet Overrun, #5114
200,000 1b Chicago O'Hare; no injury
A/C damage: none
DC-10-30 01/23/82 Landing Fog/Ice Overrun, #3853
365,000 1b Boston-Logan
Fatal + injuries
A/C destroyed
DC-10-10 02/03/82 T.0. Wet Overrun, #1334
410,000 1b Philadelphia Intl.;
Injury
A/C damage: minor
B737-2H4 02/15/82 Landing  Unk Overrun, #5026
110,000 1b LA Intl., no injury
A/C damage: none
B727-200 02/19/82 Landing  Wet Overrun, #5069
191,000 1b Harlingen, TX, no injury
A/C damage: none
DC-9-30 02/18/82 Landing Ice Overrun, #5085
109,000 1b Pellston, MI; no injury
A/C damage: none
DC-9 03/117/80 Landing Wet Overrun, #1-0015
Unk Baton Rouge, LA; Injury
A/C damage: substantial
A/C 11 07/09/78 Landing Unk Overrun, #1-0010
Unk Roche<ter, NY; Injury
A-2
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SUMMARY OF OVERRUN ACCIDENTS (cont'd)

Aircraft/ T.0./ Runway
Weight Date Land Condition Comments
87217 04/05/16 Landing Fog/Snow Overrun, #1-0003
Unk Ketchikan, AK; Injuries,
A/C destroyed
B7127 04/27/176 tanding Dry Overrun, #1-0005
Unk St. Thomas, VI;
Fatal + injuries
B747 05/06/76 Landing Unk Overrun, #1-0006
Unk Chicago, IL; no injury
A/C damage: substantial
L188 03/12/76 Landing Unk Overrun, #1-0025
Unk Udrivik, AK; No injury
A/C destroyed
8737 03/31/175 Landing  Snow Overrun, #1-~-0001
Unk Casper, WY; Injury
A/C damage: substantial
FH-~227 06/13/75 tanding Wet Overrun, #1-0014
Unk New Bedford, MA; no injury
A/C damage: substantial
REPORT: Advisory Group for Aeronautical Research and Development
Report 226, October 1958
TITLE: Emergency Stopping of Aircraft Which Overrun Airfield Runways
AUTHOR: S. Thomlinson
Various mechanical methods stopping aircraft are
discussed: Systems such as nylon barriers, drag chains, hydraulic rams,
etc.
Soft ground arrestment is discussed but not in quantitative
terms.
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) APPLICATION TO PRESENYT STUDY: Manv of the mechanical systems have

\ potential for application should the interest arise. The water squeezer,

A

> for example, appears attractive as well as the drag chain. By causing

arresting wire engagement at several points along the overrun, various

.- aircraft weights could be accommodated. Al}l of the above are basically
-

::_ passive and would be activated at the point of overrun by the nose gear.
.

) (No help for tail sitters.)

.

-;. REPORT: Boeing  727-737 Operation from Unimproved Airfields,

’_.; D6-42025R7, May 1984

]

AUTHOR: Anon

¥

:\ Brochure presents information concerning the operation of

:'. aircraft on gravel and other unimproved runways. Overruns not discussed.
iC APPLICATION TO CURRENT EFFORT: None.

N
! REPORT: NASA TN D-732 December 23, 1960

Y

&

. TITLE: Investigation of Water Pond Arresting of a Dynamic Model of
::: a Jet Transport

s
<

: AUTHOR: William C. Thompson
b
:: Report describes model aircraft entering a water pond

::: arrestor system. The pond was both covered with a plastic film and
: uncovered. High decelerations were obtained upon entry to the pond until
:' the depth of water was reduced by programmed bottom slope. Reasonable
‘: decelerations obtained.

&Y

.\"

- APPLICATION TO PRESENT STUDY: Water ponds have potential in areas not
. subject to sustained freezing water. Cost of pond installation is likely
L]

:'.: to be high. Attraction to birds, frogs, etc.

N

:..:

- REPORT: Royal Aircraft Establishment TR 74002, February 1974
v
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TITLE: Urea Formaldehyde Foamed Plastic Emergency Arresters for
Civii Aircraft

5

o~
AUTHOR: G. M. Gwynne -
Ia
"'\.
o,
Report describes tests of Comet 3B in urea formaldehyde foam Y
arrestor beds. Foam beds had tapered entrance 1:12.5 with 1light density -~
foam over heavy density foam. Demonstrated removal of aircraft from foam :E
bed and traffic of rescue vehicle. ::
o
APPLICATION TO PRESENT STUDY: Develop "soil model" for second pass to :*.
include effects of bogey gear. .
2
ey

Ly
ok

REPORT: Royal Aircraft Establishment TR 71015, February 1971:
TR 71231, November 1971

Y,

(TR 71015) Soft Ground Arresting of Civil Aircraft: :ﬂ
(TR 71231) Development of a Model Technique for j:
Investigating the Performance of Soft Ground Arresters for %
Aircraft N
2
AUTHORS:  E. Bade; J. Barnes ]
3
Both reports investigated modeling techniques for testing ;;-
gravel arrestors. ptj
Y
APPLICATION TO PRESENT STUDY: These reports did not contain information {_
of use for the present study. :a
7
REPORT: Royal Aircraft Establishment TR 69001, January 1969 :f'
»
TITLE: Soft Ground Arresting of Civil Aircraft--Influence of Gravel :3’
Depth and Tire Inflation Pressure ::
A

AUTHOR: E. Bade
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N
Experimental tests were conducted wusing the British A
Lightning aircraft on gravel test beds to determine the effect of gravel "
bed depth and aircraft tire pressure on aircraft deceleration. Gravel
bed depth of 18 inches increased the deceleration over that in a
12-inch deep bed. A 30-inch deep bed showed no significant increase in E
deceleration. Reduced tire pressure reduced the deceleration. j
2
APPLICATION TO PRESENT STUDY: Determine that test bed materials are
sufficiently deep to ensure boundary effects are minimal. Y
2
REPORT: Royal Aircraft Establishment TR 68032, February 1968 C
TITLE: Soft Ground Arresting of Civil Aircraft -
o
AUTHOR: E. Bade 3
fﬁ
Investigations were made into the use of aerated concrete E
and gravel as materials for stopping overrunning aircraft. The aerated N
concrete was compression tested but the <crushing Tload wvaried ;'
considerably. Gravel samples of 3/4 to 1/4 inch in size were compression r
tested and the results dindicated crushing strengths of about 13 to ;ii
30 psi. When frozen the crushing strength increased tenfold; however, :E
this was limited to a small thickness of about 3 inches in overnight Ej
soak. Vehicle testing was conducted showing significant decelerations ;:
could be obtained. No trajectory problems were encountered but pitching i
of the aircraft was induced when the main gear entered the gravel bed. ::
Gravel beds are subject to jet blast and aircraft jet exhaust should be i
at least 100 feet from bed. f‘
APPLICATION TO PRESENT STURY: Gravel material has simitar E;
characteristics to sand and may produce similar deceleration resuits. %;
-
REPORT: Royal Aircraft Establishment, Bedford Naval Air Department -
NAD Note 282, March 1971 N
3
)
] 3
v )
<
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TITLE: Aircraft Arresting Using Foamed Plastic Overrun Areas

AUTHOR: G. M. Gwynne

Report shows that 50 psi foam (crushing strength) is
adequate to support most aircraft at a depth equal to the tire radius.
The wusable foam depth is about 80 percent of 1its initial value.
Discussion of using soft foam layer over hard layer to accommodate all
weights of aircraft. Conclusions indicate foam material would probably
not be suitable for all aircraft.

APPLICATION TO PRESENT STUDY: No new information.

REPORT: Royal Aircraft Establishment Tech Memo Naval 213, April 1970

TITLE: Preliminary Feasibility Study of the Arresting of Aircraft
in a Foamed Plastic Overrun Area

AUTHOR: T. G. Randal

The use of urea formaldehyde foam 1in an overrun area is
considered. Report concluded that the system is feasible technically.

Content of Interest: Urea formaldehyde foam absorbs water.
Material is noncombustible. Material crushed elastically to about 50 psi
and then crushes at a uniform stress to about 30 percent of initial
thickness, then becomes much stiffer. Wheel load is supported by uplift
equal to one-half the footprint length times cross-section of tire times
the foam crushing strength. Drag force is obtained by assuming that the
crushing stress is applied to the vertical projection area of contact
times the tire width. The actual! drag force is found by adjusting the
upthrust until it matches the wheel loading. This then determines the
depth that the wheel will sink into the foam. Experimental tests were
conducted using a dummy F-4C aircraft to traverse foam beds at tow, 60,
and 100 knnt speeds. The foam produced decelerations of about 0.2 g in
11-inch deep foam beds.
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.
APPLICATION TO PRESENT STUDY: Report contains methods for predicting :
static forces (drag and vertical loads) from foam material. No technicel "
foam characteristics were provided for application to FITER computer ﬂ
program.
)
REPORT: Wright Air Development Division, WADD Tech Note 60-167,
September 1960
TITLE: Open Water Pond Concept for Arresting Large Jet Aircraft -
P
%
AUTHOR: J. C. Welch, Capt., USAF 3
This report describes the methods of analysis for . 3;
L%
determining the distance to stop aircraft by a water pond. The water tf
draga on the landing gear is computed using incompressible flow t‘
characteristics for 1ift and drag. The 1lift is used to determine wheel ?
planing and drag provides the deceleration force. f,
APPLICATION TO PRESENT STUDY: Provide analysis methods as well as useful N
comments for water pond decelerators. ?
:
N
REPORT: Advisory Group for Aeronautical Research and Development ::
Report 413, January 1963 N,
-y
TITLE: The Problems of Designing for the Takeoff and Landing of ;
High Speed Aircraft ;
Report discusses various arrestor gear such as brake f
parachute, arrestor gear (Navy), and thrust reversers. Wing lcading and N
[
other aerodynamic performance parameters are discussed ir conne~Tion with ;;
takeoff and landing performance. ’
b
APPLICATION TO CURRENT STUDY: none <]
i
REPORT: FAA Report No. RD-65-4, January 19f5 N
-
o3
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TITLE: A Study of Arresting Gear

M. G. Beard

AUTHOR:

Report discusses the potential cost savings of using

- arresting gear to prevent overruns. This information was used to

forecast future overruns and their potential costs.

APPLICATION TO PRESENT STUDY: None other than demonstrating the need for

an arrestment system.

REPORT: JFK1A-Runways 4R-22L Safety Overrun Study, August 4, 1985

TITLE: A Study of Arresting Gear

AUTHOR: W. B. Horne

The report considered several materials for an overrun at

JFK1A. The recommended short term solution was a gravel, sand and

gravel, and water overrun area. Long term solution suggested looking at

foam materials.

e, APPLICATION TO PRESENT STUDY: Provided good background information for
e climatic conditions, review of overrun materials. Data specific to the

material for modeling purposes were not given.
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APPENDIX B
AIRCRAFT SIMULATION DATA

')

The primary data for the geometry, tire curves, and landing gear

TN

£, <,

strut information for Aircraft A through E were taken from Reference 7.

\

The weights and gear limit loads for Aircraft A through D and listed in

this appendix were obtained from the aircraft manufacturers.
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AIRCRAFT DATA

"
[
>
04
W
<4
J

AIRCRAFT A

NG o Tire Pressure (Note: if tires are serviced at different

& pressures for various gross weights, please indicate) d
y

()

:: Nose 95 to 105 MAX. (psig) 32 x 11.5 - 15, 12 PLY TIRES

. Main 167 to 173 MAX. (psiq) 50 x 21 - 20, 30 PLY TIRES .
g 0 Maximum 7.0. Weight 209,500 (1b)

.

‘\.‘.
- o Moment of Pitch Inertia Iyy 61.224 x 106 (1b sec? in.)

o CG Fuselage Station 766.3", Main Gear Strut Fuselage DISTANCES

. Station 819.9", Nose Gear Strut Fuselage Station FROM NOSE

:‘ 60.9 (1“) ' d
:'} )
> o Maximum Landing Weight 161,000 (1b)

Ca

- o Moment of Pitch Inertia Iy, 62.748 x 108 (1b sec? in.)

:: o (6 Fuselage Station 746.4" from nose

:5 o Limit Drag and Vertical Load envelope for nose and main gear

:: (include side load effect if possible)

2

Cal .
= DNg = 25.6 x 103 LB (LIMIT), VN = 44.4 x 103 LB (LIMIT), X
7. :
~ SNG = 15-87 x 103 LB (LIMIT)

R .
~ Dug = 69.47 x 103 LB (LIMIT), VMg = 195.2 x 103 LB (LIMIT), :
. N
X SMg = 76.33 x 103 LB (LIMIT) A
g '
-J

"

- .
W

- )
- 4
N B-2
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AIRCRAFT DATA

AIRCRAFT B

Aircraft Dimensions

0 Wheelbase 56.1 (ft)
o Overall Length 125.6 (ft)

Tire Inflation Pressures

o Nose Gear 148 (psig) max at 114,000 1b to 116 (psig) at
90,000 1b

o Main Gear 160 (psig) max at 114,000 1b to 120 (psig) at
90,000 1b

Maximum Takeoff Weight 114,000 (1b)

o Moment of Pitch Inertia 2.34 x 10! fwd ¢G; 2.75 x 107
aft CG (1b sec? in.)

o C.G. Height Above Ground 99 (in.)

o C.G. Fuselage Station 704 fwd CG; 739 aft CG (in.)
0 Main Gear Strut Fuselage Station 771.8 (in.)

o Nose Gear Strut Fuselage Station 98.0 (in.)

Maximum Landing Weight 102,000 (1b)

o Moment of Pitch Inertia 2.74 x 107 fwd CG; 2.36 x 107
aft CG (1b sec? in.)

o C.G. Height Above Ground 99 (in.)
o C.G. Fuselage Station 703 fwd CG; 750 aft CG (in.)

Limit Gear Loads

Gear Vertical Drag Side

Main 115,358 53,839 43.595 (1b)

Nose 32,072 17,032 10,896 (1b)
8-3
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AIRCRAFT DATA

AIRCRAFT C

0

Tire Pressure (Note: if tires are serviced at different
pressures for various gross weights, please indicate)

Nose 109 to 119 MAX. (psig) 39 x 13, 16 PLY TIRE

Main 189 to 199 MAX. (psig) 46 x 16, 28 and 30 PLY TIRES

0 Maximum T.0. Weight 335,000 (1b)
o Moment of Pitch Inertia Iyy 76.39 x 108 (1b sec? in)
o CG Fuselage Station 843.6", Main Gear Strut Fuselage DISTANCES
Station 917.0", Nose Gear Strut Fuselage Station FROM NOSE
209.0 (in)
0 Maximum Landing Weight 247,500 (1b)
0 Moment of Pitch Inertia Iyy 74.5 x 106 (1b sec? in)
0o CG Fuselage Station 873.6" FROM NOSE.
o Limit Drag and Vertical Load envelope for nose and main gear
(include side load effect if possible)
Dyg = 50.4 x 103 LB (LIMIT), VNg = 68.2 x 103 LB (LIMIT),
SNg = 27.5 x 103 (B (LIMIT)
Dug = 102.67 x 103 LB (LIMIT), VMg = 261.47x 103 LB (LIMIT),
Sug = 114.8 x 103 LB (LIMIT)

Boeing 707-320C (Model Boeing 707-320C -- data available are for aircraft

with wheelbase 59.0 ft, fuselage length 152.92 ft)

o
AFwo.

0

0

Same as above, plus:

+16°45' to 17°45' max
-9°45' to ~ 11°15' max

+0
-6

~

Main Gear Pitch Inertia 5.3 x 103 to 6.0 x 103 1b sec? in.
(DEPENDS ON BRAKING EFFECTIVENESS)

ry 28 in., rp 28 in.
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AIRCRAFT DATA
AIRCRAFT D

Aircraft Dimensions

o Wheelbase 72.4 (ft)
o Overall Length 170.5 (ft)

Tire Inflation Pressures

o Nose Gear 165 (psig) max at 458,000 1b to 135 (psig) at
275,000 1b

o Main Gear 190 (psig) max at 458,000 1b to 120 (psig) at
215,000 1b

Maximum Takeoff Weight 455,000 (1b)

o Moment of Pitch Inertia 2.1 - 2.8 x 108 (1b sec? in.)

o C.G. Height Above Ground 193 (in.)

o C.G. Fuselage Station 1346.7 fwd CG; 1384.0 aft CG (in.)
0 Main Gear Strut Fuselage Station 1,442.0 (in.)

o Nose Gear Strut Fuselage Station 573.4 (in.)

Maximum Landing Weight 363,500 (1b)

o Moment of Pitch Inertia 1.3 -2.3 x 108 (1b sec2in.)

o C.G. Height Above Ground 193 (in.)

o C.G. Fuselage Station 1341.9 fwd CG; 1392.4 aft CG (in.)
Limit Gear Loads

Gear Vertical Drag

Main 374,700 171,750

Nose 143,900 68,700

Main Gear "Bogey" Data

0 Length: front axle to strut 32 (in); strut to rear axle
32 (in.)

0o Main Gear Pitch Inertia 1.2 x 10% (1b sec? in.)

0 Max Pitch Angle: fwd wheels up 16 (deg); rear wheels up
26 (deg)
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APPENDIX C =
LABORATORY TESTING OF FOAM AND GRAVEL ;’
=
Compression tests of polystryene foam and gravel were conducted in ::
the Structures Laboratory of the University of Dayton to determine the ::'
crushing strength of these materials. gﬂ
R,
The foam tests were conducted using a MTS hydraulic test machine %i
which was programmed to provide a displacement curve as shown in l;;
Figure C-1. The plate (see Figure 13, Section 2) was adjusted manually L
so that it was barely in contact with the sample before the displacement ? .
was activated. The load on the plate was measured by a load cell located j_E
just under the plate when the plate was displaced into the foam sample. i:
7o
The above tests were conducted on five different types of poly- L
stryene for eight different pulse time periods, and foam curves such as 5;;
Figure C-1 were obtained. The foam characteristics of Figure C-2 were ﬁ;.
used in the analyses. The original of all data collected has been ;;‘
provided to the United States Air Force project engineer since the data !a
were too voluminous to include in this report. ié
X
Attempts were made to use the spring and damper in series soil jﬁ:
model (Reference 1) but this proved to be unsuccessful because the foam 2:_
did not behave in the same manner as soil. It was found that the foam ;f
deflected linearly during the first 10 percent of the thickness but then E;
it maintained a constant stress thereafter with positive displacement. Q§
This made the foam modeling much simpler and the model finally used is 4
described in Section 2. :?i
Oy
Similar tests also were conducted on graded gravel number 57 _;‘
(Reference 6). The gravel was loaded into a large garbage can and the 9;
MTS machine plunger was inverted so that it traveled downward into the 5:3
gravel. The pulse shape was triangular as shown in Figure C-3. For the if_
jong pulse times, the gravel indicated a fairly constant stress (about iz’
26 psi) for about the first 0.4 inch and then began to rise. This ®

crushing stress agreed vreasonably well with the British results
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(Reference 4). The rapid rise in the stress level was probably due to
the container for the gravel being too small. The test results were
scattered but they were considered adequate to conduct the present
study. Experimental testing of this type gravel is required to verify
the analytical model used (see Section 2).
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APPENDIX D o~
¥4

PROPOSED ARRESTOR TEST PROGRAM »

7

1. INTRODUCTION -
£

During the feasibility study portion of the Soft-Ground Aircraft <
Arrestment System program, certain assumptions were made regarding the ﬁg
foam or gravel beds used in the arrestment of aircraft. A listing of the ﬁ;
assumptions follows. o
b\

1.1 The foam bed is secured to the ground plane so that it will not o
e

move during engagement. N
"

1.2 The entire tire width and height will be engaged in the foam to the :‘
full depth of the foam. That is, there will be no voids in the ;}f
foam as a result of horizontal shearing of the foam by the tire. :;:

.‘J'

1.3 The surface boundary from the runway to the end of the foam/gravel ;’
bed is rigid. There is no sinkage of the wheels into the surface L
covered by foam or gravel during any part of the aircraft ﬁﬁ.
arrestment phase. :W:
‘.\. :
A

. . . ?

1.4 The wheel tracks into the foam leave adequate width for any leading ¥,
wheels of a following strut to engage the full depth of foam. For j:_
example, the 0C-10-30 mid-body gear will follow in the nose gear ﬁ,f
A

track and will be largely ineffective in producing drag. However, ;'

all leading wheels of Boeing 747 struts would be effective since T

they are in separate tracks. -:f

1.5 The wheel/foam or wheel/gravel model predicts the correct vertical KR
and drag force. -"

1.6 Braking does not affect foam bed performance.




N
2
")
s
N To validate the analyses already conducted to determine the stopping
o, R . .
& distance of aircraft in foam or gravel, it is necessary to conduct some
b, ) experimental tests. The experimental program must be designed to confirm
8 the correctness of the above assumptions and to determine what
S cp- . . .
:_ modifications to the analyses will be required to assure accurate results
j: for future predictions.
>
o
- 2. TEST O0BJECTIVES
<
'::J
-4
- 2.1 The test objectives are {o wvalidate the analytical prediction
:QT metreds  used during ths feaszibility  study. These enalytical
predicticn methods were doveloned ysing information contained i1
;'ﬁ the literature, and only limited confirmation was available. The
\é foam materia! obtaines «-um Powu Themical has net beern tested for
N
:} use as ar arrestcr and 3. rcharacteristics must alsce be wverified.
ol
rawed {correrina) tect- b keern odnpipded for nonperpendicniar bed
j:j entry.
';- 2.2 Develep some cost information on the placement of foam and gravel
Q‘ L
» arrestor beds.
S
'\—
-“'_. 3. TEST WHEEL ASSEMBLY
o
A The experimental program should be conducted at the Naval Aircraft
.j: Engineering Center, Lakehurst, NJ, or NASA Langley Landing Dynamics
1Y
’: Facility, Hampton, VA. The tests would involve determining the vertical,
%: drag, and side forces (time histories) deveioped on a wheel when it
traverses foam and gravel test beds. The test wheel can be mounted on an
'}j aircraft landing gear strut or just an axle attached rigidly tc the test :
i: carriage or "Dead lLoad Vehicle." An F-4C fighter main grar with the tire g
T deflated to about 180 psi would be suitable. Adequate instrumentation
3 (strain gage bridge, accelerometers, etc.) must be added to the wheel
ly; model to measure the loads (vertical, drag, side, and brake torque), the
- velocity, wheel rotation, and the dead load deceleraiicn.
,;:
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4. FOAM ARRESTOR BED

o570

The foam arrestor bed configuration shoulid be a constant depth and
a maximum depth not greater than the test wheel diameter. If an F-4C
main gear is used, the thickness would be a maximum of 24 inches. A

- f 8 & A &

6-foot ramped section will be added to the front of the foam bed. The
- length of the bed should be a minimum of 26 feet and the width will be
8 feet. This will allow the use of standard size foam blocks. Foaming
"in place" 1is not considered appropriate due to quality control of the
foam strength.

The test beds will be built up in 2.0-~inch thick slabs, each 2 feet
) by 8 feet, and each slab glued on the abutting edges and on the face
surface of the blocks. The foam will be constrained to the ground by a
wire attaching it to a wire mesh which will be fastened to the surface by
lag screws. Two foam bed depths should be tested, one 12 inches deep and

' aa & &

; one 24 inches deep if the F-4C main gear is used. Only one gravel bed
needs to be tested, a constant slope to a height of 24 inches 1in
50 feet. This choice of foam depths would change if larger landing gears
are used.

The crushing strength of the foam beds should be 45 psi (12-inch
deep bed) and 45 and 60 psi (24-inch deep bed). The gravel should be #57
aggregate (ASTM D448-86).

S Al

5. INSTRUMENTATION AND CALIBRATION

R The test gear should be instrumented with strain gages to measure
- loads and moments about three perpendicular axes (three loads and three
’” moments). If a full strut is used, the strut stroke also be measured.
3 Wheel rotation and brake pressure should also be measured. Carriage or
é dead load velocity should be measured. Details of the instrumentation
S will be determined as a part of the follow-on program. Al

instrumentation must be calibrated while using the intended recording
y * system.
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6. TEST SCHEDULE OUTLINE

The following 1is a sequence of events required to successfully

complete the test program.

6.1 Preliminaries

Select test facility and sel=rt test gear.
Determine participating organization responsibilities.

Define arrestor bed confiquration and obtain materials.
6.2 Instrument and calibrate the test gear.
6.3 Conduct test program. #revide still and motion picture coverage.
6.4 Compare results with analytical studies.
6.5 Resolve differences between analytical and experimental studies.
6.6 Restore test facility to original configuration.
6.7 Write report.

A test schedule for the above outline has been prepared and is
shown in Figure D-1. The entire testing is expected to take about 12
months to complete. A total of 28 tests is believed necessary to assure
conclusive results on both foam and gravel materials.

It may be possible to shorten the test schedule if the foam beds
can be replaced in a quicker time. An average of five days has been
allowed to conduct each foam test since the entire bed will have to be

replaced. Gravel tests should be completed faster but the same time was

allowed.

The placement and replacement of foam beds <hould be performed by
one team of people at the test site. Th. team could be made up of local
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¥

\ TIME - MONTHS
_ MILESTONES 112345678930 3172
b : .
2 1. PRELIMINARIES y
A ACQUIRE TEST LANDING GEAR ;
DESIGN INSTRUMENTATION
» INSTALL, AND CALIBRATE n
-
a2 DESIGN TEST FIXTURE FOR
N DEAD LOAD (CARRIAGE)
~- MOUNTING OF TEST GEAR
' FABRICATE TEST GEAR .
X MOUNTING FOR DEAD »
N LOAD (CARRIAGE)
N INSTALL TEST GEAR,
- CHECK OUR INSTRUMENTATION
" AND CONDUCT PRELIMINARY {
o RUN (NO BED)
fl
ﬁ‘ ACQUIRE FOAM MATERIAL
- FOR TEST \
e DEFINE FOAM BED
e CONFIGURATION (FROM
w ANALYSIS)
Y
X 2. CONDUCT TESTS
? (FOAM BED) INSTALL AND \ '*%"-‘%‘-Jf
- REPAIR BED AS REQ'D
2 TEST 1-3 20, 40, 8Okts y
N 12 INCH FOAM BED, NO ; )
D BRAKES, 45 PS] FOAM
" TEST 4-6 20, 40, 80kts
- NO BRAKES 24 INCH FOAM BED X
7 45, 60 PSI FOAM 3
e g
" Figure D-1. Foam/Gravel Arrestor System Test Schedule ;
-
s,
-\.' l
a‘ ;
N D-5 .
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TIME - MONTHS
MILESTONES 516 | 7] 8

TEST 7-9 20, 40, 80 kts
NO BRAKE 12 INCH FOAM BED
60 PSI FOAM

TEST 10-11 20, 40 kts
BRAKES 12 INCH BED 45 PSI
FOAM

TEST 12-13 REPEAT TEST
10-11 60 PSI FOAM

TEST 14-16 20, 40, 80 kts
12 INCH FOAM BED FOAM
45 PSI YAW 5° (LEFT)

« 2y =

TEST 17-19 20, 40, 80 kts
12 INCH FOAM BED 60 PSI
YAW 5° (LEFT)

¥y — P

o

GRAVEL BED

X
LA

TEST 20-22 20, 40, 80 kts
NO BRAKES

oo

TEST 23 25 20, 40 80 kts
BRAKES

NS RANNY
E

TEST 26-28 20, 40 80 kts
YAW 5° (LEFT)

. DATA ANALYSIS

. WRITE TEST REPORT

Nak sy

Figure D-~1. Foal/Gravel Arrestor System Test Schedule {(cont'd)
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indication of the time required for a full bed replacement. The above
also applies to the gravel bed replacement and repair.

7. MISCELLANEOUS TESTS

7.1 Temperature and Jet Blast Effects

The distance from the jet blast should be determined in
order to assure that the arrestor bed is not blown away or melted. The
arrestor bed should be exposed to full thrust exhaust blast from a Boeing
747 or DC-10 aircraft engine. Temperature and velocity profiles should
be determined.

8. FuLL SCALE TESTS

The above plan only covers the validation of the analytical methods
and the performance of the Dow Chemical foam/gravel selected. We believe
that a full scale test of the arrestor bed is also needed to provide the
using community with the required confidence to install an aircraft
arrestor system. This test should be done after the attached
experimental program is completed but it might be desirable to initiate
arrangements for aircraft to test and for a site to conduct the tests.

At least two or three full scale aircraft should be tested on
arrestment beds which are only as wide and as long as required for the
test. A full size (200 x 800 foot) bed would not be required.

The soft-ground aircraft arresting system study was initiated to
determine whether or not aircraft having gross weight of 114,000 pounds
to 630,000 pounds could be safely stopped after overrunning the available
length of runway. The extended length of runway was limited to 1,000
feet and the maximum velocity of the overrunning aircraft was selected to
be 70 knots. In addition, the system was to be completely passive, have
a long life and easily repaired and maintained. Several arrestor

material such as clay, sand, gravel, water, and plastic foam were

D-7
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considered. An aircraft wheel/arrestor material model was developed and
incorporated into a computer program FITER which allowed the
determination of the aircraft stopping distance, landing gear Jloads,
dynamic response and rut depth in he arrestor material analyses conducted
showed that sand, clay and water system were not suitable arresting
materials due their 1inability to retain stable properties. Gravel and
plastic foam were found to be suitable materials for an aircraft
arrestor. Aircraft arrestment simulations were conducted for gravel and
plastic foam arrestors and it was found that all aircraft could be safely
stopped in less than 660 feet while in the arrestor bed. Evaluation of
the stopping distance in an arrestor bed with the stopping distance of an
extended runway were made and it was found that the arc arrestor system
was needed to assure the safe stopping of an aircraft. Initial arrestor
bed configurations were developed along with idinstallation methods and
attachment of the arrestor to the extended runway surface.

9. LABORATORY TESTS.

Laboratory testing of the arrestor bed foam or gravel materials
should be conducted to validate their characteristics under all weather
conditions. Samples should be taken from the test materials and each

subjected to plate impact tests to determine:
a. Foam effective compression depth.
b. Wet and frozen foam characteristics.

c. MWet and frozen gravel characteristics.

Laboratory testing of foam ground attachment methods should be
conducted.
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